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The one-dimensional spin facilitated kinetic Ising model is studied analytically
using the master equation and by simulations. The local state of the spins
(corresponding to mobile and immobile cells) can change depending on the
state of the neighbored spins, which reflects the high cooperativity inherent in
glassy materials. The short-time behavior is analyzed using a Fock space
representation for the master equation. The hierarchy of evolution equations for
the averaged spin state and the time dependence of the spin autocorrelation
function are calculated with different methods (mean-field theory, expansion in
powers of the time, partial summation) and compared with numerical simula-
tions. The long-time behavior can be obtained by mapping the one-dimensional
spin facilitated kinetic Ising model onto a one-dimensional diffusion model con-
taining birth and death processes. The resulting master equation is solved by
van Kampen's size expansion, which leads to a Langevin equation with Gaussian
noise. The predicted autocorrelation function and the global memory offer in
the long-time limit a screened algebraic decay and a stretched exponential
decay, respectively, consistent with numerical simulations.

KEY WORDS: Lattice theory; nonequilibrium kinetics; glass transition.

I. INTRODUCTION

In spite of advances in the description of liquids near the glass transition
using different approaches(1�4) the phenomenon is generally not complete
understooden. Supercooled fluids reveal often a non-Arrhenius behavior of
the relaxation spectrum such as it is manifested in a stretched exponential
decay of the correlation function. In contrast to conventional phase transi-
tions a long range order is not developed. However, the dynamical glass
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transition can be described by an increasing cooperativity of local processes
with decreasing temperature.(5) The cooperativity leads to the well known
slowing down in the dynamical behavior (non-Arrhenius) which can be
illustrated by a strongly curved trajectory in the Arrhenius plot (relaxation
time { versus the inverse temperature T &1). One possible fit of this curve is
given by the Williams�Landel�Ferry (WLF) curve(6) with ln { B (T&T0)&1

and a finite Vogel temperature T0 . The :-process is an universal phenomena
of the glass transition. There is a general suggestion that the :-process
corresponds mainly to the cooperative molecular diffusion, e.g., the diffu-
sion coefficient D and the : relaxation time {: are often related by D{: &1.

Mode coupling theories(1, 7, 8) (MCT) predict the existence of an
ergodic :-process above a kinetic critical temperature Tc and a nonergodic
;-process below Tc . Note that Tc is in the range between the melting tem-
perature Tm and the glass temperature Tg , e.g., Tm>Tc>Tg . At Tc the
system undergoes a sharp phase transition to a state with frozen (density)
fluctuations. The :-process within the MCT is thought to correspond to the
actual dynamic glass transition whereas the ;-process is often identified
with a cage rattling or the boson peak.

Really the : process still exists below Tc . This process leads to a slow
decay of apparently frozen structures (The nonergodic structures obtained
from the MCT are approximately stable only for a finite time interval).
This slow decay shows the typical properties which correspond usually to
the dynamics of the main glass transition (WLF like behavior of the relaxa-
tion time, stretched exponential decay of the correlation function). These
effects can be partially described in terms of an extended mode coupling
theory(9, 10) introducing additional hopping processes.

There exists also various alternative descriptions(3, 11) which explain
the cooperative motion of the particles inside a supercooled liquid below Tc .
One of these possibilities is the spin facilitated Ising model, (11�14) originally
introduced by Fredrickson and Andersen. The basic idea of all these models
consists in a coarse graining of space and time scales and simultaneously a
reduction of the degrees of freedom. In detail that means:

1. Coarse graining of spatial scales. The supercooled liquid is
separated into cells in such a way that each cell contains a sufficiently large
number of particles which realize a representative number of molecular
motions. Thus the many body system consists of a virtual lattice with the
unit size l. This lattice has no influence on the underlying dynamics of the
supercooled liquid.

2. Reduction of the degrees of freedom. Each cell will be charac-
terized by only one trivial degree of freedom, i.e., the cell structure enables
us to attach to each cell an observable _j (usually denoted as spin) which
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characterizes the actual dynamic state of particles inside the cell j. The
usual realization is given by the local density \j (particles per cell) with
_j=0 if \j>\� and _ j=1 if \j<\� where \� is the averaged density of the
system. This mapping implies consequently different mobilities of the par-
ticles inside such a cell, i.e., _j=0 corresponds to the immobile solid like
state and _j=1 to the mobile state of cell j. The set of all spin observables
_=[_j ] forms a configuration. The evolution of the statistical probability
distribution function P(_, t) can be described by a Nakajima�Zwanzig
equation (or generalized master equation) by using a projection of the real
dynamics to the dynamics of _.

3. Coarse graining of the time scale. This step bases on the assump-
tion that the memory term of the Nakajima�Zwanzig equation is deter-
mined by the fast molecular processes while the slow dynamics is mainly
included within the local time contributions. Of course, the validity of this
assumption depends strongly on the choice of the remaining degrees of
freedom, and in many cases it is very hard (or impossible from the actual
point of view) to give a satisfactory explantation of this assumption.
However, if this separation of the dynamics is justified one can introduce
an elementary time scale larger than the time scale of the fast molecular
processes. Therefore, the memory term will be reduced to simple local time
terms. Finally, one obtains an evolution equation which is equivalent to the
mathematical representation of a usual master equation.

�P(_, t)
�t

=:
_ $

L(_, _$) P(_, t) (1)

The dynamical matrix L(_, _$) is determined by the above discussed formal
procedure. Unfortunately, the direct calculation is mostly very complicated,
so that one should use reasonable assumptions about the mathematical
structure of L.

To make the time evolution of the glass configurations more trans-
parent we use the argumentation following the idea of Fredrickson and
Andersen, (11�14) i.e., we suppose that the basic dynamics is a simple process
_j=+1 W _j=0 controlled by the thermodynamical Gibb's measure and
by self induced topological restrictions. In particular, an elementary flip at
a given cell is allowed only if the number of the nearest neighbored mobile
cells (_j=+1) is equal or larger than a restriction number n with 0<n<z
(z: coordination number). So, elementary flip processes and geometrical
restrictions lead to the cooperative rearrangement of the underlying system
and therefore to a mesoscopical modelling describing a supercooled liquid
below Tc . Such models(11�14) are denoted as n-spin facilitated Ising model

1751D Spin Facilitated Kinetic Ising Model



on a d-dimensional lattice SFM[n, d ]. The SFM[n, d ] can be classified as
an Ising-like model the kinetics of which is confined by restrictions of the
ordering of nearest neighbors to a given lattice cell. This self-adapting
environments influence in particular the long-time behavior of the spin�
spin and therefore of the corresponding density�density correlation func-
tions. These models were studied numerically(15�18) (SFM[2, 2]) and
recently also analytically(19) (SFM[1, 1]).

The SFM[1, 1] is the simplest model which reflects the cooperative
dynamics of the spin facilitated kinetic Ising models. It is an important fact
that the direct neighbors of every cell with the state _j=+1 can change
their state. This behavior is completely independent from the state of these
neighbors. In models of higher dimension, e.g., SFM[2, 2], exist a finite
fraction of cell with _j=+1 which nearest environment is blocked by the
next neighbors.(18) Therefore, the SFM[1, 1] is a model describing a
relatively weak cooperativity. Nevertheless, this model shows a charac-
teristic slowing down of the kinetic. On the other hand the SFM[1, 1]
allows various possibilities for a mathematical description discussed in the
present paper. From that point of view the SFM[1, 1] is a suitable model
for a study of cooperative processes.

II. APPROACHES TO THE SFM[1, 1]

In this section the basis ideas are presented which will be used in the
subsequent chapters for an analysis of the SFM[1, 1].

A. Fock-Space Approach

Following Doi, (20) compare also ref. 21, the probability distribution
P(_, t) can be related to a state vector |F(t)) in a Fock-space according to
P(_, t)=(_ | F(t)) and |F(t)) =�_ P(_, t) |_) , respectively, with the
basisvectors |_) . Using this representation the Master equation (1) can be
transformed to an equivalent equation in a Fock-space

�t |F(t))=L� |F(t)) (2)

The dynamical matrix L(_, _$) of (1) is mapped onto the operator L� given
in a second quantized form with d and d - being the annihilation and crea-
tion operators, respectively, for flips processes. Usually L� is expressed in
terms of creation and annihilation operators which satisfy Bose commu-
tation rules.(20, 22, 23) The SFM[n, d ] can be interpreted as a lattice gas
(_i=0: empty cell, _i=1: occupied cell) with special kinetic restrictions,
i.e., changes of the configuration _ are possible only under the presence of
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the exclusion principle. To preserve the restriction of the occupation number
in the underlying dynamical equations too, the commutation rules of the
operators d� and d� - are those of Pauli-operators:(25, 21, 22, 26)

[d� i , d� -
j ]=$i, j (1&2d� -

i d� i ) [d� i , d� j ]=[d� -
i , d� -

i ]=0 d� 2
i =(d� -

i )2=0 (3)

It should be remarked that the method can be extended to the case of
higher restricted occupation numbers.(27) As it was shown by Doi (20) the
average of a physical quantity B(_) is given by the average of the corre-
sponding operator B� (t)=�_ |_) B(_) (_| via

(B� (t)) =:
_

P(_, t) B(_)=(s| B� |F(t)) (4)

with the notation (s|=�_ (_|. Remark that the normalization condition
is manifested in the relation (s | F(t)) =1. The evolution equation for an
operator B� can be written as

�t(B� ) =(s| [B� , L� ] |F(t)) (5)

Here we have used the necessary relation (s| L� =0, which is an immedi-
ately consequence of the normalization condition.

The evolution operator for the one-dimensional SFM[1, 1] can be
written as

L� =:
i

(D� i+1+D� i&1)[*(d� i&D� i )+;(d� -
i &(1&D� i ))] (6)

with the particle number operator D� i=d� -
i d� i and temperature dependent

jumping rates * and ;. Applying a simple activation dynamics it results

*=&&1 exp(=�T ) and ;=&&1 exp(&=�T )

where &&1 is an elementary time scale (= is the energy difference between
the solid and liquid like state). The knowledge of L� and the corresponding
evolution equation (2) allows a reasonable analysis of the SFM[1, 1]. The
method is applied further in Section III to calculate the autocorrelation
function.

B. Kinetic Approach

The equilibrium state of the SFM[1, 1] at very low temperatures is
characterized by a small concentration of single mobile cells, and only the
two cells neighbored to such a mobile cell are able to change their orientation.
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Blocks of mobile cells with a length l�2 are extremely rare and can be
neglected for the following investigations. Such blocks have only a short life
time and they can be interpreted as ``unstable'' states. A single mobile cell,
neighbored by blocks of immobile cells, can not be annihilated by a simple
step because of the above mentioned restrictions. However, one can now
distinguish between three types of quasi elementary local processes:

1. Diffusion. A diffusion of a single cell is possible by the following
steps. An immobile cell neighbored to the mobile cell changes the state with
the probability :&exp(&=�T ) and becomes mobile. Then, the original
mobile cell changes their state to an immobile one. It results an effective
diffusion of a single mobile cell, see also Fig. 1a. Thus the probability for
a diffusion step is of an order of magnitude of :.

2. Creation of mobile single cell. A new single cell can be created by
the following procedure. One of the two immobile cells neighbored to the
single mobile cell changes their state and becomes mobile (probability :).
Then, one of the two immobile cells neighbored to the mobile block of
length 2 changes their state and becomes also mobile (probability :). At
least, the central cell of this block becomes immobile (probability r1).
One obtains two single mobile cells, separated by one immobile cell, see
also Fig. 1b. The probability for the creation of a new single mobile cell in
the nearest environment of another single mobile cell is of order :2.

3. Annihilation of a single mobile cell. A single mobile cell can be
neighbored by another single mobile cell, separated only by one immobile
cell (probability \&density of mobile states). The immobile cell between
both mobile cell changes their state (probability :). Now one obtains a
mobile block of length 3. Finally, the length is reduced to 2 and then to 1
(probability 1). Thus, the probability for the annihilation of new single
mobile cell in the nearest environment of another single mobile is
approximately :\.

Fig. 1. Diffusion (a), creation (b), and annihilation (c) of _=1 states composed by elemen-
tary flip processes.
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These three quasi elementary processes contribute to a conventional
master equation. To find out that one, let us separate the 1-dimensional
space in sufficiently large supercells containing N cells. The number of
mobile spins in such a supercell i, ni<<N, can be changed by a creation
of new mobile units, the annihilation of mobile units or the diffusion into
a neighbored supercell. The configuration of the whole system can be
described by the configuration vector n=[ni ], the probability that such a
configuration is realized at the time t is denoted as P(n, t). The time evolu-
tion of these probabilities is given by the following master equation:

�P(n, t)
�t

=:
i

:2[(n i&1) P(n&ri , t)&niP(n, t)]

+:
i

:
N

[ni (ni+1) P(n+ri , t)&ni (ni&1) P(n, t)]

+
1
2

:
i, j

:3ij[(nj+1) P(n+rj&ri , t)&n jP(n, t)] (7)

where the above discussed transition rates for diffusion, annihilation and
creation are taken into account. The reaction vector ri is defined by r:

i =$:
i .

The solution of this equation (see Section IV) gives a reasonable descrip-
tion of the low temperature behavior of the SFM[1, 1].

C. Numerical Approach

The numerical simulation bases on the following steps. Starting from
a regular (square) lattice introduced before we introduce at each lattice
point a value _i with the two possible states _i=0, 1 and the initial con-
figuration _=[_i=1 for all i ]. We allow the elementary steps: _i=0 #
_i=+1. Such flips are realized with a transition probability 1 for 1 � 0
and exp[&=�T ] for 0 � 1 (Metropolis algorithm). In addition to this ther-
modynamic flip rate we have the topological restriction that a flip of cell
i is only possible, if the following condition is satisfied _i&1+_i+1>0. This
restriction leads to the characteristic hindrance effects of the SFM[1, 1].
Using these elementary steps it is easy to create an equilibrium configura-
tion. The equilibrium is reached if the averaged state _� =(_i) =
N+ �(N0+N+) (N+, 0 are the numbers of cell with the state _=1 and
_=0, respectively) becomes

_� =
N+

N0+N+

w� _� eq=
1

1+exp(=�T )
=

;
*+;

(8)
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The algorithm leads to a decay of the average _� =(_i ) from the initial
value _� (0)=1 to the thermodynamical equilibrium _� (�)=_� eq . It should
be denoted that the principle of detailed balance is always fulfilled, i.e., the
equilibrium state is realized for each cell and each elementary process. _� (t)
is one of the numerical standard quantities determined here. Another quan-
tities are related to the thermodynamical equilibrium. Because of the fact
that the Hamiltonian H of the SFM[1, 1] is equivalent to a simple
paramagnetic gas, i.e., H=&= �i _i , the equilibrium states are simple
random chains with a probability p=_� eq for to get the state _=1 and
q=1&_� eq to obtain the state _=0. The decay of a given equilibrium state
is characterized by the relaxation time. This relaxation time can be
obtained from an analysis of the time dependent normalized autocorrela-
tion function

C(t)=
(_i (t) _i (0)) &_� 2

eq

_� eq(1&_� eq)
(9)

or from the decay of the global mobility function. This is the fraction of
cells F(t), which remain unflipped after a time interval t from an arbitrary
initial time has elapsed.(18) The numerical simulations will be used to a
verification of the results obtained from the above mentioned analytical
techniques.

III. SHORT-TIME BEHAVIOR

A. Relaxation into the Thermodynamical Equilibrium

The short time behavior of these relaxation is far from the equilibrium,
and it can not be expected that there is a linear relation to the properties
of the equilibrium via the fluctuation dissipation theorem.

1. Hierarchical Equations. The time evolution of the averaged
spin state _� (t) can be obtained from (5) by using the identity _� (t)=(D� i )
and (6). Hence

�t _� =;((D� i&1) +(D� i+1) )&(*+;)[(D� i&1D� i ) +(D� i+1D� i )]

This equation includes higher moments of neighbored cells. The evolution
equation of these moments contains the next higher correlations, i.e., one
obtains a infinite large hierarchical system of evolution equations. The
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simplest way for a breaking off of this hierarchy is the decoupling ansatz
(D� i&1D� i )r(D� i&1)(D� i ) =_� 2 which leads to the mean field solution

_� (t)=
_� eq

1&(1&_� eq) exp(&t�{0)
(10)

with the relaxation time {0=(*+;)&1�2.
Another possibility bases on a more accurate decoupling(19) considering

any possible block of spin down states. On the other hand, blocks containing
down and up states are decoupled into products of spin averages and
smaller blocks of pure down states. As a result of this procedure one
obtains a infinite large system of nonlinear evolution equations which can
be solved exactly. Using

,( y)=(1&_� eq) |
y

0
_� (t)

one obtains nonlinear integral equation(19)

|
�

0
dy exp {&py&

,( y)
p+1==

2+ p&_� eq

( p+1)(1+ p&_� eq)
(11)

for the quantity ,. Note that p is a free parameter, i.e., (11) must be fulfilled
for all p>0. The knowledge of , allows the determination of _� (t) due to
the relation _(t)(1&_� eq)&1 ,4 (t).

For the short time regime one gets:(19)

_� (t)=_� eq+2(1&_� eq) exp[&t�{0]
I1(t�t0)

t�t0

(12)

Here I1(x) is the first order modified Bessel function and t0 is a second
relaxation constant defined by t&1

0 =4- *; . Figure 2 shows the numerical
decay of _� (t) obtained from the above mentioned numerical simulations in
comparison with (10) and (12), respectively. It can be seen, that both for-
mulas approach only the short time regime very well. The actual differences
between numerical simulations and (10) and (12), respectively, show (see
Fig. 3) that a fit based on (10) gives rise to a slightly larger error that the
fit with (12). Thus, we conclude that the result (12) is more appropriate for
the short time regime than (10). Note that this statement is valid for each
temperature T>0.

The difference between both results consists in the fact that the mean
field approximation (10) suppresses the fluctuations of neighbored spins
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Fig. 3. Difference (short time regime) 2_� (t)=_� (t)&_� num(t) between the predictions of
Eq. (10) and numerical data (full lines) and between the predictions of Eq. (12) and numerical
data (dotted lines), respectively, for _� eq=0.1,..., 0.5. There is no significant dependence on _� eq .
But it can be observed that the mean field approximation Eq. (10) shows a systematic devia-
tion from the numerical data, whereas the differences of the second approach Eq. (12) are
mainly fluctuations caused by the numerical simulation. Obviously, the accuracy of the simple
mean field theory is smaller.

completely whereas the solution (12) takes these fluctuations into account
at least partially.

2. Exact Solution for T=0. The zero temperature case can be
solved exactly. To this aim we define the cluster function

9� m
i = `

m

j=0

D� i+ j#D� iD� i+1 } } } D� i+m

Such a function gives only a nonzero contribution when all the m+1 cells
of the cluster are in the state _=1. Using the algebraic properties of the
Pauli-operators we are able to derived an exact evolution equation(19) for
the average of the cluster function (9� m

i ) . Obviously there occurs a
hierarchy of equation where 9� m

i is related to higher order cluster functions.
However for the zero temperature limit where the stationary value
_� =;�(*+;), see (8) tends to zero the set of equations reads

�t(9 m)=&m(9 m)&(9 m+1)
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where we have dropped the cell number due to translational invariance.
Furthermore the time variable is rescaled by t � t�{0 . As the initial condi-
tion we choose again a parallel alignment (9 m)(t=0)=1 corresponding
to complete liquid-like state. The last equation can be solved by the ansatz
(9 m)=.m(t) exp(&mt) leading to

�t .m=.m+1 exp(&t)

The solution of the last equation can be easily calculated under the initial
condition. As result we get the final relation

(9 m)(t)=exp {&m
t

{0= exp {exp \&
t

{0+&1= (13)

The cluster function reveals a double exponential decay. In the initial time
scale the conventional exponential decay dominates. However in the long
time limit it results a pronounced slowing down leading to a nonergodic
behavior which is manifested in finite value for _� (t)=(9 0(t)) in the limit
t � �. We find _� (�)=e&1. The exact result is depicted in Fig. 4. The com-
parison with simulations reveal that the numerically determined decay of
_� (t) coincides with Eq. (13) (m=0) only for an intermediated time scale
for low temperatures.

Fig. 4. Decay of _� (t) for very low temperatures (corresponding to _� eq=0.05 and 0.1). The
dotted line is the to rigorous solution for T=0 Eq. (13). The dashed lines are the theoretical
predictions obtained from Eq. (25) and the application of the fluctuation dissipation theorem.
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B. Equilibrium Relaxation Behabior

An analytical determination of the density autocorrelation function (9)
can be realized by using the relation

C(t)=('̂i (t) '̂i (0))=('̂ieL� t'̂ i ) (14)

which follows immediately from the above discussed Fock space represen-
tation, compare Eq. (2). Here we have introduced for convenience the
operator

'̂i=
D� i&_� eq

- _� eq(1&_� eq)

To calculate the correlation function Eq. (14) we use an expansion in
powers of the time

C(t)=:
k

(&t�2{0)k

k !
1k with 1k=(&2{0)k ('̂iL� k'̂ i ) (15)

(the time scale {0 is defined again by {0=(*+;)&1�2). Using the algebraic
properties of the Pauli-operators and the abbreviation l� i=*(d� i&D� i)+
;(d� -

i &(1&D� i)) we get some helpful auxiliary relations

(s| l� i=0, (s| '̂i l� i=&
1

2{0

(s| '̂ i and (s| D� i l� i=&
- _� eq(1&_� eq)

2{0

(s| '̂i

(16)

Applying these relations and

(s| '̂iD� i=�1&_� eq

_� eq

(s| D� i and (s| D� 2
i =(s| D� i

the correlation function C(t) can be represented by diagrams. Denoting the
operator '̂i by an open circle b and the operator D� i by a bullet v the terms
(s| '̂iL� k can be simply figured by chains of circles and bullets. The zero order
(k=0) corresponds to one open circle representing '̂i . The first order
diagrams are created from an application of L� =�m (D� m&1+D� m+1) l� m
applied on the state (s| (into the left direction). Nonvanishing contributions
result only for m=i. It remains (s| '̂i L� =&((s| '̂i D� i&1+(s| '̂iD� i+1)�(2{0)
corresponding to two diagrams (see Fig. 5). The bullet stands the operator
D� i\1 neighbored to the operator '̂i (open circle). The next application of
L� on (s| '̂i D� i&1 and (s| '̂i D� i+1 , respectively, leads to 2_4 new diagrams,
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Fig. 5. Diagram expansion of (s| '̂i L� k for k=0 } } } 2. The arrow indicates the initial point.
The prefactors are products of 1, }=(_� eq(1&_� eq))1�2 and `=((1&_� eq)�_� eq)1�2.

because both cases m=i and m=i\1 leads to nonvanishing contributions.
The structure of all these diagrams are drawn in Fig. 5. The generalization
of this first steps lead to the following rules:

1. For a given diagram in any order, the next higher order can be
constructed by picking out a point (b,v) and the subsequent transformation
of this point into b . The diagram should be multiplied by a prefactor 1 for
the transformation b � b and by a prefactor - _� eq(1&_� eq) in case of the
transformation b � v. Denoted that all changes of signs and all powers of
(1�2{0) are taken into account, see the representation (15).

2. Simultaneously, a neighbored point is picked out and transformed
into v. The diagram is multiplied by the factor

v - (1&_� eq)�_� eq if the original point was b .

v 1 if the original point was v.

v 1 if the original point was an empty point (at the end of the chains).

Following (15) all diagrammatic contributions are multiplied by '̂i

and the average procedure over all points should be performed. Because of
the paramagnetic Hamiltonian (see above) the average over an arbitrary
chain, e.g., ( . . . '̂i&2D� i&1 '̂iD� i+1 . . .) decays in a chain of single averages,
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e.g., . . .('̂i&2)(D� i&1)('̂ i)(D� i+1). . . . Because of ('̂m) =0 only diagrams
with a single circle becomes a nonzero value (Note that ('̂2

i )=1 and
(D� i) =_� eq) if this circle is localized at the original position i.

The application of the diagram rules allows a successive determination
of the coefficients 1k in (15). Unfortunately, the number of diagrams
increases rapidly and a systematical evaluation becomes impossible. There-
fore, it will be helpful to find a reasonable approximation of the autocor-
relation function C(t). Here we present some few possible standard methods,
which allow a determination of C(t) at least for short times.

v Taylor Expansion:

The simplest approach consists of a breakdown of the series at a given
order, i.e. one obtains the finite Taylor expansion

C(t)r :
S

k=0

(&t�2{0)k

k!
1k (17)

The coefficients 1k can be determined by the above discussed procedure.
For the lowest order follows

10=1 11=2_� eq 12=2_� eq(1+_� eq) 13=4_� eq(1+_� eq)

and

14=10_� eq+18_� 2
eq&16_� 3

eq+4_� 4
eq

The insert of Fig. 6 shows the behavior of the autocorrelation function C(t)
for S=1 } } } 4. The series reflects very well the short time behavior with
increasing S. However, the convergence of these series at moderate and
large time scales is weak.

v Cumulant Expansion:

This expansion has the representation:

C(t)=exp { :
S

k=1

(&t�2{0)k

k!
#k= (18)

The first cumulants #k can be obtained from the by a simple calculation
from the coefficients 1k :

#1=2_� eq #2=2_� eq(1&_� eq) #3=4_� eq(1&_� eq)2
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Fig. 7. Deviations of the first finite Taylor series (dotted lines) and the first finite cumulant
series (full lines), respectively, from the numerical data for _� eq=0.1. The accuracy of the
cumulant series is slightly better than the Taylor expansion of the same order.

and

#4=2_� eq(1&_� eq)(5&8_� eq+4_� eq)

Figure 6 shows the approximation for C(t) on the short time scale using
(18). From this point of view, both, Taylor expansion and Cumulant
expansion, seem to be very similar. But it can be checked from the dif-
ference between the numerical simulation and (17) and (18), respectively
(see Fig. 7), that the approximation (18) is slightly better than that one
based on (17). However, this expansion fails also at sufficiently large times
because of the weak convergence for t � �.

v Partial summation:

Another possibility is the computation of the infinite series (15) by
using reasonable approximations of the 1k for sufficiently large k. One
obtains after some calculations (see Appendix A) the final expression for
the correlation function:

C(t)= :
�

n=1

_� n&1
eq

1 2(n)
1 (2n&1)

:
n&1

+

(&1)n&1&+

(n&1&+)! (+)!
:
�

k=0

(2+)k

k! \&
t

{0+
k

(19)
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Fig. 8. Short time behavior of the partial sum of diagrams (see Eq. (22)) for the case
_� eq=0.1 in comparison with the corresponding numerical simulation. The accuracy is
approximately the same as for Taylor and cumulant expansion, respectively.

Figure 8 suggests that this correlation function is also in a good agreement
with the short time regime of the corresponding numerical simulations.

All presented methods show approximately the same accuracy. We
obtain a sufficiently good approach to the actual numerical data for short
times, but the deviation from the simulation results increases with increasing
time. Obviously, the nearest environment of a given spin determines the
short-time behavior of C(t). This environment is reflected in the first Taylor
coefficients and cumulants, respectively. On the other hand, the local
environment determines the mean contributions of the expansion (19) for
short times. On the other hand, the long�time behavior of the autocorrela-
tion function C(t) is significantly controlled by the spins of a large environ-
ment. Hence, finite Taylor series or cumulant expansions become invalid
with increasing time. But also the some few assumptions used for the
derivation of (19) are too strong for a sufficient description of the complex
cooperatively rearrangement of the spins. The behavior at moderate and
long times must be described by another techniques which are presented in
the following section.
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IV. LONG TIME BEHAVIOR

A. Equilibrium Relaxation Behavior

1. Autocorrelation Function. The long time behavior can be
obtained from a solution of (7). Although this equation was originally
derived for sufficiently low temperatures one finds also a good agreement
between the solution of (7) and numerical simulations. But it should be
remarked that this equation is a very accurate approximation for long time
limit because the deviation of (7) bases mainly on the balance at large
scales. After the transformation

ni=N\� +- N !i

and the usual van Kampen system size expansion, (28) one obtains:

�P(!, t)
�t

=:
i

:2 :
�

mi=1

(&- N )&mi

m i ! \ �
�!i+

mi

[(N\� +- N !i) P(!, t)]

+:
i

: :
�

mi=1

N&mi�2&1

mi ! \ �
�!i+

mi

_[(N\� +- N !i)(N\� +- N !i&1) P(!, t)]

+:
i, j

:3ij :$
�

mi , kj=0

(&1)mi N&(mi+kj)�2

mi! kj !

_\ �
�! i+

mi

\ �
�!j+

kj

[(N\� +- N !j) P(!, t)]

Note, that the sum �$ excludes the case mi=kj=0. The expansion in terms
of 1�- N leads up to the first two orders

�P(!, t)
�t

=:
i

:2 {&- N \�
�P(!, t)

�!i
&

�(!iP(!, t))
�!i

+
\�
2

�2P(!, t)
�!2

i =
+:

i

: {- N \� 2 �P(!, t)
�!i

+2\�
�(!iP(!, t))

�!i
+

\� 2

2
�2P(!, t)

�!2
i =

+:
i, j

:3ij {�((!i&!j) P(!, t))
�!i

+
\�
2 _

�
�!i

&
�

�!j&
2

P(!, t)=
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The first order terms (t- N ) are cancelled by using the condition \� =:
which corresponds to the thermodynamical equilibrium (ni)�N=:. Thus,
it remains a Fokker�Planck equation for the fluctuations !:

�P(!, t)
�t

=:
i _(2:2+:3)

�2P(!, t)
�!2

i

&:2 \ �
�!i+1

�
�!i

+
�

�! i&1

�
�! i+& P(!, t)

+:
i

:2 �(!i P(!, t))
�!i

+:
i, j

:3ij
�((!i&! j) P(!, t))

�! i
(20)

Using

Ai (!)=&:2!i+:(! i+1+!i&1&2!i)

and

Bij=
1

- 2
(:3�2+- :3+4:2) $i+1, j&

1

- 2
(- :3+4:2&:3�2) $ ij

with

1
2 (BBT ) ik= 1

2BijBkj=[:3+2:2] $ i, k&:2($i&1, k+$i+1, k)

(20) can be rewritten as:

�P(!, t)
�t

=&:
i

�(Ai (!) P(!, t))
�!i

+
1
2

:
i, k

�
�!i

�
�!k

[(BBT ) ik P(!, t)]

i.e., one obtains the corresponding stochastic equation of motion:(29)

d!m

dt
=Am(!)+:

n

Bmn'n(t)

The noise field 'n(t) can be realized by a set of independent normalized
Gaussian processes. A simple discrete Fourier transformation

!m=|
?

&?

dq
2?

!(q) exp[imq] � !(q)= :
�

m=&�

exp[&imq] !m

leads to

d!(q)
dt

=&0(q) !(q)+I(q, t)
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with the frequencies

0(q)=[:2�2+:]&2: cos q=:2�2+2: sin2(q�2)

and the noise term:

I(q, t)=_ 1

- 2
(:3�2+- :3+4:2) exp(iq)&

1

- 2
(- :3+4:2&:3�2)& '(q, t)

Under consideration of the normalized noise ('(q, t$) '*(q$, {$))=2?$(q&q$)
$(t$&{$) the correlations of I(q, t) become simply (I(q, t$) I*(q$, {$))=
4?:0(q) $(q&q$) $(t$&{$). Therefore, the correlation function of the fluc-
tuations !(q, t) can be written as:

(!(q, t) !*(q$, {))=2?: exp(&0(q) |t&{| ) $(q&q$)

Finally, the local correlation becomes

(!(r, t) !(r, 0))=\ 1
2?+

2

|
?

&?
|

?

&?
dq dq$ (!(q, t) !*(q$, 0))

=
:

2? |
?

&?
exp(&0(q) |t| ) dq

Using 0(q)r:(:+q2)�2, the last integral leads to a simple expression:

(!(r, t) !(r, 0)) =C exp \&
:2t
2 +

8(? - :t�2)

- t
(21)

8 is the error function. It is obviously that the fluctuations (21) behave like
the autocorrelation function C(t), see (9). On the other hand, the kinetic
coefficients for creation, annihilation and diffusion processes are deter-
mined with respect to the order of magnitude, i.e., it is reasonable to expect
a more generalized representation for the autocorrelation function:

C(t)=exp \&
:2

1 t
2 + 8(? - :2 t�2)

- 2?:2 t
(22)

This representation takes into account that the time scale of the original
equation (7) must not correspond to the actual time scale, e.g., the number
of Monte-Carlo steps in the numerical simulations. The introduction of
another time scale leads to the rescaling t � +t. Thus, the prefactor +
generates the different coefficients :1=: - + and :2=:+ because of the dif-
ferent coupling between t and : in the first and the second term of (21).
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Furthermore, the introduction of different parameters :1 and :2 considers
also the correct prefactors (of the transition rates) which are originally
neglected in course of the derivation of Eq. (7). However, all scaling factors
are simple constants, i.e., the ratio :1 �:2 must be temperature-independent.

C(t) is normalized to be the unit for t=0. Figure 9 shows the decay
of the autocorrelation function C(t) determined by numerical simulations
and fitted by using (22). As expected, there is a sufficient agreement
between the numerical data and the relation (22). It should be remarked
that from the fit procedure follows that both parameters :1 and :2 are
simply Arrhenius activated. The ratio :1 �:2 depends not on the tem-
perature, i.e., one obtains :1 �:2=87.29(1\0.057) for all values of _� eq .

2. Global Mobility F(t). The global memory function can be
obtained by a simple approximation. Each equilibrium state consist of local
(cell) states which are independently from the states of the neighbored cells.
Thus, the probability to find a chain of ! neighbored cell with the state _=0
is an exponential distribution (note that p(!)=_� eq(1&_� eq)!

texp[&!�!0]

Fig. 9. Long time behavior of C(t): Numerical simulations in comparison with the predic-
tion of Eq. (25) (dotted lines, which are partially covered up by the numerical results) for
various temperatures corresponding to _� eq=0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. The temperature
increases in the direction of the arrow.
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with !0=&1�ln(1&_� eq)). A change of the state of the chain cells is not
possible by the kinetics of the cells inside the chain. Only the dynamics at
the two borders leads to a decay of the self blocked chain. The motion of
the two ends of the chain (characterized by the state _=1) can be
described by the above discussed diffusive motion. The averaged penetra-
tion length at the time t of these endpoints into the original chain is given
by !$&- :t . Therefore, all original chains with !<!$ are rebuilded
whereas chains with !>!$ contains a remaining part of the averaged length
2!=!&!$ which has never changed the state of the containing cells.
Therefore, the fraction of all cells which remain unflipped after the time
interval t from an arbitrary initial time can be written as:

F(t)=
��

- :t [!&- :t ] exp[&(!�!0)] d!

��
0 ! exp[&(!�!0)] d!

=exp {&
- :t
!0 = (23)

Figure 10 shows the long time behavior of F(t) obtained from numerical
simulations and fitted by using (23). It can be seen that the approach

Fig. 10. Long time behavior of F(t): Numerical simulations in comparison with the predic-
tion of Eq. (26) (dotted lines) for various temperatures corresponding to _� eq=0.05, 0.1, 0.2,
and 0.4. The temperature increases in the direction of the arrow.

1951D Spin Facilitated Kinetic Ising Model



ln F(t)t &- t is preferred for sufficient low temperatures and at sufficient
long times. Obviously, it must be considered that for short times the decay
of the cells with the state _=1 leads to an additional contribution. Thus,
the initial behavior of ln F(t) shows an approximately linear decay, i.e.,
ln F(t)t &t. Furthermore, the above used assumption of a diffusion con-
trolled decay of the chains with _=0 becomes relevant for sufficiently large
blocks, i.e., for sufficiently low temperatures.

B. Relaxation into the Equilibrium

This behavior can be discussed briefly. Because of the fluctuation dis-
sipation theorem there is a direct connection between the autocorrelation
function C(t) and the relaxation into the equilibrium. Especially the long
time behavior of _� (t) for sufficiently long times (i.e., closed to the equi-
librium state _� (t)r_� eq) behaves like C(t). It is easy to show that the
behavior after reaching the quasi frozen plateau can be described also by

_� (t)=_0 exp \&
:2

1 t
2 + 8(? - :2t�2)

- 2?:2 t
(24)

Figure 4 shows the numerically determined decay of _� (t) in comparison
with a fit using Eq. (24). One obtains a good agreement between the
predicted long time behavior (t>101) of _� (t) and the numerical data.

V. CONCLUSION

As discussed above by various analytical and numerical results, the
SFM[1, 1] allows both a qualitative and a quantitative study of
cooperativity.(5) Therefore, the one dimensional spin facilitated kinetic
Ising model is a reasonable model which offers insight into the origin of the
typical slowing down in supercooled liquids by a detailed The main proper-
ties of a supercooled liquid below Tc (of MCT) can be observed very well,
e.g., a stretched exponential decay of autocorrelation functions and a
characteristic crossover between the low and the high temperature regime.

But it should be denoted that such a simple kinetic model like the
SFM[1, 1] does not reflect all properties of the glassy dynamics, e.g., there
is no fast ;-process. However, the cooperative rearrangement is an intrinsic
property which gives reasons for the use of the SFM[1, 1] as an model for
a supercooled liquid.

An approximately exponential decay exists at sufficiently high tem-
peratures. This can be explained by the large number of relatively local

196 Schulz and Trimper



processes. Chains of blocked states (i.e., chains of cell with the state _=0)
are very short. Therefore, the dynamics of the SFM[1, 1] is similar to the
dynamics of a paramagnetic gas. Nevertheless, the SFM[1, 1] becomes not
equivalent to the paramagnetic gas because the geometrical restrictions
remains effective also for T � �, i.e., the cooperativity becomes small at
high temperatures but it disappears not.

The behavior of the SFM[1, 1] for low temperatures is significant dif-
ferent from that of the high temperature regime. The averaged length of
blocked chains increases rapidly with decreasing temperature and the
diffusion controlled decay of this chains becomes relevant. The change from
an approximately local dynamics to a diffusion controlled dynamics is
reflected in a characteristic stretching of the global mobility function
(ln F(t)t&- t ) and the autocorrelation function C(t)t1�- t ). This
crossover can be observed also for very short times, because the distribu-
tion of blocked chains determines of course the coefficients 1k and there-
fore also the relaxation behavior of the analyzed quantities.

Another important result is the strong difference between F(t) and
C(t). Numerical simulations(18) (for a SFM[2, 2]) at moderate tem-
peratures suggest an approximately equivalence F(t)tC(t). But the
analytical results show that at least for sufficiently low temperatures both
quantities are strongly different.

Furthermore, the model supports the picture of an increasing dynami-
cal heterogeneity(30, 31) with decreasing temperature, i.e., the kinetic motion
is restricted to the neighbors of mobile cell (a cell in the state _=1). All
other cells, especially the cells in the long blocked chains are completely
frozen.

At the end let us make a short remark to the above applied techni-
ques. Both, mean field approximation (Section III.A.1) and series expan-
sion leads to practicable results, even if the accuracy is not to strong.
Slightly better results can be obtained for short times from the solution of
the infinite hierarchical system of evolution equations(19) and for long times
from the above discussed kinetic approach. Both techniques allow a com-
plete prediction of the numerical simulations.

APPENDIX A. PARTIAL SUMMATION

A possible approach to the infinite series (15) can be obtained by
using reasonable approximations of the 1k for sufficiently large k. To this
aim it is necessary to find an answer to the following three questions:

1. How many n-point diagrams exist at a given order k (the operator
L� had been applied k-times)?
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2. Which fraction of these diagrams has only one open circle
localized at the initial position?

3. What are the prefactor of those diagrams?

To answer the first question let us introduce the number of diagrams
Rk which are created after k steps. Rk can be decomposed into different
fractions Rk

n which contains the diagrams with n points (n�k+1):

Rk= :
k+1

n=0

Rk
n

Inspecting the diagrammatic rules we get the following recursion relation

Rk+1
n+1=Rk

n+1[2(n&1)+2]+2Rk
n=2(nRk

n+1+Rk
n) (A1)

The first term contains all diagrams which does not change the number of
points by an application of L� , whereas the second term includes all
diagrams which contains a new point created by a subsequent application
of L� . Taking into account the initial and boundary conditions R0

n=$n1 ,
Rk

1=$k0 and Rk
0#0 one obtains the rigorous solution of (A1)

Rk
n= :

n&1

+

(&1)n&1&+ (2+)k

(n&1&+)! (+)!
(A2)

Obviously not all Rk
n graphs will contribute to 1 k.

An approximate answer to the second question can be obtained by
mean-field arguments. For that we analyze a diagram with n points at the
order k. The application of L� leads either to an extension of the graph by
an additional point or to a change of the sequence of bullets and circles
along the chain. The frequency to find a graph of order k and n points with
m circles (and n&m bullets) is given by the probability distribution
|n(m, k). The determination of |n(m, k) bases initially on a subclass of
diagrams, which are formed firstly by n&1 growing steps whereas further
steps changes only the sequence of bullets and circles (i.e., the length of the
graph is conserved). We make the assumption that this subclass is a repre-
sentative one of all other graphs of order k with n points (this can be
legitimeted by inspecting directly the diagrams with relative small n). We
study the change of the sequence in the framework of a mean field theory.
Under consideration that the previous sequence (order k) has m circles, the
following changes are possible (see also Fig. 11):

1. Application of L� (or more precisely l� ) on a circle (the circle is
conserved by this application, see below): If simultaneously the neighbor
affected by this procedure is also a circle then it will be transformed into
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Fig. 11. Schematic ``reactions'' inside a diagram. In terms of the mean field theory there is
no correlation to the actual spatial distribution of the bullets and items. The arrows indicate
the application of L and the simultaneously affected neighbor, respectively.

a bullet, i.e., the new sequence loses a circle and wins an additional bullet.
The relative frequency for the existence of neighbored circles is given by
m(m&1)�n(n&1).

2. Application of L� on a circle: If the neighbor affected simultaneously
is now a bullet, the sequence will not be changed. The frequency that a circle
and a bullet are in the neighborhood is given by m(n&m)�n(n&1).

3. Application of L� on a bullet which will be transformed into a circle:
If the affected neighbor is a circle, this point becomes after the application

of L� a bullet. Thus, the number of circles and bullets of the total graph is
conserved, only the position is changed. The frequency for this process is
also m(n&m)�n(n&1).

4. Application of L� on a bullet: If the affected neighbor is also a
bullet the number of circles increases and consequently one bullet disap-
pears. The frequency is (n&m)(n&m&1)�n(n&1).

Thus in mean field approximation we find the discrete Chapman�
Kolmogorov equation:

|n(m, k+1)=
m(m+1)
n(n&1)

|n(m+1, k)+2
m(n&m)
n(n&1)

|n(m, k)

+
(n&m)(n+1&m)

n(n&1)
|n(m&1, k) (A3)

The stationary solution |0(m) of (A3) fulfils the self consistent relation
|(m, k)=|(m, k+1). Hence |0(m) is given by the normalized solution

|0(m)=
1 (n+1) 1 (n&1)

1 (2n&1) \n&1
m +\ n&1

m&1+
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The stationary solution is the rigorous solution of (A3) for k � �. For the
following investigation we assume that the rigorous solution of the (A3)
can be approximated by the stationary solution for k�2n. The fraction of
diagrams with exact one circle is given by

|0(1)=
1 (n+1) 1 (n)

1 (2n&1)

and the fraction of diagrams with only one circle at the original position
(corresponding to the initial cell (i) becomes

|~ n=
|0(1)

n
=

1 2(n)
1(2n&1)

(A4)

Furthermore it is a simple consideration that a diagram with n points but
only one circle exists only if the order k is restricted by k�2n&4 (n�2).
Therefore, the total number of relevant graphs of order k with n points is
given by

Zk
n=Rk

n |~ n3(k+4&n)

3(x) is the usual step function (3(x�0)=1 and 3(x<0)=0).
The last question concerns the determination of an averaged prefactor

of these graphs. Here we consider only the of low temperature regime, i.e.,
_� eq � �. The extension to higher temperatures is always possible. The for-
mation of a diagram with only one circle (all other points are bullets) from
one initial circle would indicate that the number of created and annihilated
circles must be equivalent. Thus the number of prefactors - _� eq(1&_� eq)
and - (1&_� eq)�_� eq is also equivalent, i.e., the total prefactor power of
1&_� eqr1 and can be neglected. On the other hand, each final bullet
produces a factor _� eq . Thus a diagram with n points has the weight _� n&1

eq .
Finally, one obtains

1k= :
�

n=1

Zk
n _� n&1

eq = :
�

n=1

Rk
n |~ n3(k+4&n) _� n&1

eq

Using (15), (A2) and (A4) we end up with the final expression for the
correlation function

C(t)= :
�

n=1

_� n&1
eq

1 2(n)
1 (2n&1)

:
n&1

+

(&1)n&1&+

(n&1&+)! (+)!
:
�

k=0

(2+)k

k! \&
t

{0+
k

(A5)
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